广告招募

当前位置:全球工厂网 > 技术中心 > 所有分类

高级傅里叶公式,傅里叶变换公式推导,傅里叶变换性质公式

2023年09月14日 08:18:03      来源:安徽思成仪器技术有限公司 >> 进入该公司展台      阅读量:27

分享:

傅里叶变换公式推导,傅里叶变换性质公式张世龙06-08 15:08113次浏览

傅立叶变换(FT )傅立叶变换的目的是将时域(即时域)上的信号变换为频域)上的信号,由于对同一事物的理解角度根据区域而变化,所以在时域中有时难以处理,但在频域中比较容易处理。

傅立叶变换公式:

(w是频率,t是时间,e^-iwt是复函数) ) )。

在傅立叶变换中,一个周期函数(信号)包含多个频率成分,任意函数(信号) (f )、t )可以通过将多个周期函数(基函数)相加来合成。

要从物理上理解傅立叶变换,请使用一系列特殊函数(三角函数)作为正交基础对原始函数进行线性变换,其物理意义为原函数在各组基函数的投影。

傅立叶公式推导:我们首先从函数f(t )是周期性函数推导出来,然后推导出非周期性函数的傅立叶变换,傅里叶公式一般就是指非周期行函数的傅里叶变换(FT)。(1)对于周期为1的函数f(t)

(此处的x今后标记为t ) ) ) ) ) ) ) ) ) ) )。

欧拉公式这里的Ck是一个复数,Ck一般称为傅里叶系数,平时对频域的变换,一般改变的就是Ck。

高级傅里叶公式_快速傅里叶与傅里叶_傅里叶逆变换公式表

例如,该图表中频方向的图表的每个频域的值是Ck的值

接着求出Ck值

自由

对函数进行两边积分

(上述k指的是频域上的x坐标,每个k值为赫兹,且t表示时域上的时间)

为了模拟一个信号,信号不能通过有限个周期函数的相加来确定,存在大的误差,不能得到的近似,所以用无限的周期函数来近似

由此可知,傅立叶变换是时域和频域的变换关系。

快速傅里叶与傅里叶_傅里叶逆变换公式表_高级傅里叶公式

(2)对于非周期函数f(t)

对于一个信号的处理,信号一般不是周期性的,所以这里会产生非周期性函数(信号)的处理。

对于非周期函数高级傅里叶公式,可假定非周期函数是具有周期函数的部分,但是该非周期函数的t范围可以非常大。 :// /

f(t )是周期为t的函数,t接近无限的周期函数

傅立叶级数[f(t ) ]是

傅立叶系数为(注:无限大的周期t,因此与0-T至(-T/2 )-) t/2 )相同)傅里叶变换当周期趋近于无穷,是傅里叶系数的一般化

这是对时域中的函数图像进行傅立叶变换后的光谱图。

重要的是: 傅里叶逆变换是对傅里叶级数的一般化

另一方面,:// /

:// /

特别是在频谱图中你看到的每一条竖线就是|CK|的值时,频谱间隔越来越近,最终为对于周期为1的函数频域上每条线的间隔为1。周期为T的函数,频域上的间隔为1/T

如果将非周期函数视为周期函数的一部分,是否会出现傅立叶变换的结果?

其实这不正确。 t无限接近时,Ck趋向零,因此傅立叶系数整体的公式没有意义。

将f(t )设为区间a、b之间的其他为0,取较大的周期t设为a-T/2bT/2,将t设为函数进行扩展(|Ck|因为是复函数所以关于x轴对称) )。

傅里叶逆变换公式表_快速傅里叶与傅里叶_高级傅里叶公式

下图:

(a,b外函数为0 ) ) ) ) ) ) )。

(负指数值为1 )

此时值为固定值m

也就是说

也就是时域周期与频域有反比的关系。

即使每个频率的系数为0高级傅里叶公式,这个f(t )还有什么用?

傅里叶逆变换公式表_快速傅里叶与傅里叶_高级傅里叶公式

因此,我们从另一个角度分析:3358 /

(即不需要CK1/t的部分)

(这里与上面推导f(t )的结果相同)即 T1 -1/T1 频谱会被扩展

就这样

关于f(t ),请参阅当 T1 -1/T1 频谱会被压缩,即T趋近于无穷

顺便给出傅立叶逆变换公式:

参考文章: /question/

3359 /question/

斯坦福大学课程:傅立叶变换及其应用

傅里叶变换百科,1/t的傅里叶变换

版权与免责声明:
1.凡本网注明"来源:全球工厂网"的所有作品,版权均属于兴旺宝装备总站,转载请必须注明兴旺宝装备总站。违反者本网将追究相关法律责任。
2.企业发布的公司新闻、技术文章、资料下载等内容,如涉及侵权、违规遭投诉的,一律由发布企业自行承担责任,本网有权删除内容并追溯责任。
3.本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。 4.如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系。