投入式液位变送器LMP307-037-045-35-36水位计厂家
投入式液位变送器LMP307-037-045-35-36水位计厂家
不锈钢投入式液位计 LMP 307 专为水、洁净或受轻度污染介质的持续液位测量 而设计。LMP307配备一款高品质不锈钢传感器,具有出色的长期稳定性,可满足测量需求。
水轮发电机而言,由于发电机与水轮机有通过增速器、柱销联轴器联接和刚性直联两种方式,相应地轴承的布置也有所不同。
发电机与水轮机通过行星齿轮增速器、柱销联轴器联接该方式下,水机侧设置2付径向瓦以支撑水机转动部件的重量,1付正、反推力瓦,以支撑正、反水推力;发电机侧设置2付径向瓦以支撑发电机转动部件的重量及单边磁拉力。考虑到柱销联轴器中的尼龙柱销在传递力矩时会产生一定的变形,从而产生附加的轴向力,需在发电机侧前径向轴承中设置止推结构。
发电机与水轮机刚性直联该方式下,水机侧设置1付径向瓦以支撑水机转动部件的重量;发电机侧设置1付正、反推力瓦,以支撑正、反水推力,2付径向瓦以支撑发电机转动部件的重量及单边磁拉力。
润滑参数的确定由于轴伸贯流机组转速较低、轴系较长、负荷较大、轴系变形较大、轴颈周速较低(通常在3~5m/s),轴承润滑设计的困难在于油楔效应差,油膜自身动压能力低。机组运转时的小油膜厚度小,启停机时油膜不易形成。
按有关资料介绍,轴颈周速小于10m/s,宜考虑采用动静压复合轴承,即在启动和停机过程中,当转速在额定转速的60%以下时,投入静压油,而正常运行时则依靠动压润滑。这样须在供油系统中提供静压供油管路,从而使管路复杂,装置的可靠性较差。
为此在润滑计算时注意了轴承结构参数对润滑参数的影响,如适当增大轴颈以增大轴颈周速,同时通过对轴承的一些基本参数如相对间隙ψ、单位比压p、周向偏心e、径向偏心β、长宽比1/b、填充系数k等的佳匹配.
采用合理的支撑结构,在许多机型上取消了静压油减载装置。现在已基本掌握了同类机型小油膜厚度的计算值与实际值之间的关系。当然,在有些机组的设计中,即使采取了必要的措施后,小油膜厚度的设计值仍达不到所需的安全倍数,则宜采用动静压复合轴承。
结构设计的注意事项由于机组轴线长达10余米,轴承自重较常规卧式机组重许多,导致安装后轴承挠度较大,运行时轴承位置较静态时有显著变化。因此,轴承支撑位置、载荷、轴承的pv值选择及机组的封油、封水结构等应作为一个整体来重点统筹考虑。
水轮机导轴承采用具有球形支承面的外循环油润滑滑动轴承。轴承由轴瓦和轴承体两部分构成,分半结构。在轴承体外设有前后油盆,轴承体下部的球面,与轴承座的球面相互配合在一起。轴承座安装在导水机构内环的法兰上。
由于机组在不同的运行工况下,其主轴的挠度及旋转的偏心值不同,故该轴承在球面的作用下可以进行自调整,从而保证主轴轴颈与轴瓦的间隙,使机组运行安全可靠。考虑到导水机构等在重力作用下的变形、安装后轴承在转动部分作用下要下沉,设计时将其安装位置略微抬高,并可加垫片。同时将水轮机导轴承端盖与转轴的间隙在保证封水的情况下,作适当的放大处理。
轴瓦支座对其各工作面有较高的形位公差要求。考虑到该结构件主要承受挤压力,材料的选用考虑其抗压及吸振的能力。径向轴瓦采用球面支撑方式,以适用于轴系挠度大的要求。在有些机组中,如上坝电站,还采用了厚薄瓦结构,以方便检修。
推力瓦块与轴瓦支座间宜做到既能使瓦块摆动灵活,又要能限制其过度摆动,为此应注意推力瓦块与轴瓦支座周向、径向及背部间的配合关系并考虑较重推力瓦块自重对摆动的影响。推力盘工作表面粗糙度不宜小于0.8μm,对其平面度垂直度等形位公差有较高要求。推力盘通常采用与轴通过键联结的结构方式。键用于传递力矩,其大小宜按有关资料计算后选用,推力盘与轴宜采用小过盈的配合关系。
供油系统轴伸贯流机组的润滑冷却系统一般采用外循环结构,即发电机和水轮机轴承共用一个供油系统,集中供油;采用动静压复合轴承的供油系统中还设有一个静压油减载装置,在开停机过程中为轴承提供静压油。
低压油系统设计低压油系统由轴承高位油箱、轴承回油箱、轴承供油泵、油冷却器、液压操作阀和流量调节器等组成。润滑油的循环油路为轴承高位油箱→导轴承、推力轴承→回油箱→油泵→油冷却器→轴承高位油箱。轴承供油采用齿轮泵。
由油泵输出的润滑油通过滤油器、油冷却器后进入轴承高位油箱。高位油箱中的油经过液压操作阀分别经流量调节器后向各个轴供油。滤油器、油冷却器各设2只,并联方式布置。在设计时油冷却器其容量留有足够的余量,当一只油冷却器短时间退出使用时,机组仍可继续运行。
所有评论仅代表网友意见,与本站立场无关。